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A relation is obtained to describe the effect of the volume content of particles on the effective viscosity 
of a concentrated monodisperse suspension of spherical particles in a medium which can be regarded as 
a power-law fluid. It is shown that this effect becomes weaker as the nonlinearity of the medium 
increases. The analysis is performed on the basis of the proposilion that the deciding role is played by 

the lubricant action of thin interlayers of the medium between the surfaces of the particles. These results 

are used to calculate the viscosity of a bidisperse suspension containing a highly dispersed colloidal 

fraction and a coarsely dispersed fraction (filler). The viscosity is calculated as a function of the ratio 
of the two fractions. The calculated results are compared with experimental data for model systems. 

Introduction. Disperse systems that can be regarded as suspensions of particles in a non-Newtonian fluid are 
used in many production processes. An example of such a system is a filled polymer [1]. Also, most such suspensions 
are polydisperse. Here, particles of the fine fractions can be regarded as a certain homogeneous medium into which 
particles of coarse fractions have been placed. Since a suspension of highly dispersed particles is structured and 
therefore non-Newtonian, it can be concluded that the model of a suspension of particles in a non-Newtonian medium 
is the most realistic basis for analyzing the more complex rheological properties of suspensions. 

The most important problem in the rheology of disperse systems is developing scientific principles for 
optimizing the granulometric composition of polydisperse systems. The solution of this problem is important for the 
development of many engineering processes. For example, the development of means of transporting highly 
concentrated water--coal suspensions has shown that the highest degree of fluidity is attained with two-stage crushing. 
In this case, the suspension contains two fractions -- a highly dispersed fraction (61 < 10/~m) and a coarsely dispersed 
fraction (250 #m > 69. > 10/~m) [2]. Similar results have been obtained for suspensions of coal in methanol [3]. One 
feature of the suspensions used in these and many other engineering processes is that they contain two fractions which 
differ significantly in terms of size. Here, the highly dispersed fraction contains particles of colloidal dimensions, 
which results in the formation of a structure and the manifestation of non-Newtonian properties [4]. The particles of 
the coarsely dispersed fraction, conversely, are large enough so that all forms of interaction between them that are not 
hydrodynamic can be ignored. Since 61 << 62, it can be assumed that the particles of the coarse fraction have been 
placed in a continuous non-Newtonian medium. The role of this medium is played by the highly dispersed fraction. 

Suspension of Spheres in a Generalized Newtonian Medium. We will determine the viscosity of a suspension of 
spherical particles in a medium which, for the sake of definiteness, we will assume to be a power-law fluid, i.e., we 
will assume that its viscosity depends on the strain rate in accordance with the law 

K 
- , ( 1 )  

S ~ 

where S --- (2D:D) �89 D = �89 + (vv) T) is the strain-rate tensor. In the pure shear flow usually obtained in a 

viscosimeter, S = k is the strain rate and �9 is the strain. With the appropriate choice of values for the parameters K 
and n, Eq. (1) reliably describes a broad range of polymer solutions and highly dispersed suspensions. 
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Fig. 1. Dependence of  the viscosity of a coarsely dispersed suspension of  PMMA on 

shear rate and concentration in different  media. The solid lines denote calculated 

results, while the points show experimental data and the dashed lines show the 

experimental relations for the corresponding media. The following was used in these 

media: 7% suspension of  bentonite (n -- 0.3): ~o -- 35% (1); 40 (2); 45 (3); 47 (4); 10% 

suspension of  bentonite (n = 0.5): ~o = 25% (5); 30 (6); 40 (7); solution of  SAKAP (n -- 

0.6): ~o -- 30% (8); 50 (9). log )Is, Pa.sec; log S, sec -1. 
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Fig. 2. Results of  calculations performed with the corrected lubrication model (dashed 

curves) and the f ree-surface  model (solid curves) at n = 0 (I); 0.2 (2); 0.4 (3); 0.6 (4); 

the dot--dash curves 5, 6 correspond to the uncorrected lubrication model with n = 0.4 
and 0.6. 

A fairly rigorous analysis of  the rheological properties of  suspensions can be made only for volume contents of 
particles ~o << 1 and only then for Newtonian media. At high to, the viscosity of  the suspension can be calculated only 
on the basis of  model representations on the character of  the relative motion of  the particles. At ~o --. ~o m ~ 0.6 (the value 

of to corresponding to a dense random packing), when the mean distance between the surfaces of  particles h is small: 

---- ((~O~/q)) 1/3 - -  I )  -1  ~ a ,  (2) 
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Fig. 3. Rheological curves for a marshalite--glycerin suspension; the points show experimental data, 
while the lines show data obtained from a linear regression analysis: 1) r = 37%; 2) 42; 3) 47; 4) 52%. 

Fig. 4. Dependence of the exponent n on ~1; the points correspond to the experiments in Fig. 1, while 
the line shows the result of linear regression analysis. 
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Fig. 5. Viscosity relation of glass-bead--glycerin (1) and marshalite--glycerin (2) systems at S = 2.2 
sec-1; the points show experimental data, while the curves show results calculated from Eq. (24). 

Fig. 6. Dependence of the viscosity of a bidisperse suspension on the relative content of the fine 
fraction with ~ = 0.33 (1); 0.42 (2); 0.52 (3); the points show experimental results, while the curves 

show theoretical results. 

the effect of the fluid on the motion of the particles can be reduced to the lubricant effect of its thin interlayers 
between particle surfaces [5, 6], i.e., it can be reduced to effective forces F of hydrodynamic interaction among the 
particles. If the medium is Newtonian, then F is determined from the formula [7]: 

F-~ 3~____~_2 BaV (+ ~.O,91n ah + ' ' ' ) '  (3) 
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Meanwhile, for  rheological calculations with h/a  << 1 in this formula, it is sufficient to retain only the first term of the 

expansion in h / a .  An analysis made in [5] on the basis of study of  a dilatational flow in a certain cellular model led to 

the following estimate of  suspension viscosity for  9 -* .~Ora: 

~ _ 3 F V  (4) 
~1 8z~ ~qSZa 3 

Inserting (3) into (4), we obtain the following for Newtonian media 

,q~ 1 , 1  1,1 

~1 (q~m/q))1/3 _ 1 1 - -  (q~/q0~) I/3 (5) 

A similar analysis was made in [8], where it was noted that, within the framework of  the given method, Eqs. (4) and 

(5) can be accurate only to within the numerical coefficient.  The latter can be determined on the basis of a comparison 

with experimental data. Such a comparison [5] indicates that the coefficients used above should be used. It should be 

noted that attempts made in [6] to refine Eq. (5) on the basis of allowance for  the subsequent terms of the expansion in 

h / a  go beyond the scope of  lubrication theory and are incorrect, since the logarithmic term in (3) is dropped in this 

c a s e .  

An important  advantage of  the given approach is the possibility of  generalizing it to the case of  suspensions 

with a non-Newtonian medium of type (1). In this case, concentrated suspensions turn out to be simpler to analyze 

than dilute suspensions. Performing such a generalization for dilute suspensions is extremely complex. In the present 

case, it is sufficient that we obtain the relation F ( V )  and substitute it into (4). To do this, we will examine the flow of 

the medium between particle surfaces. Here, we introduce a cylindrical coordinate system z, r, ~b with its origin on the 

surface of  one of  the particles and the z axis directed along the line of  centers. Considering that Ovr/OZ >> OoJOr, r 

<< (ah) �89 (it is this region that makes the main contribution to the integral determining F), we have S "~ OVr/OZ. This 

makes it possible to write the equation of  motion of the medium in the gap between particles in a manner similar to 

that used in the solution of  the familiar Reynolds problem on the convergence of  plane disks in a viscous medium [9]: 

Oz [ r l \  Oz ) - O z  ] Or ' 

The boundary conditions have the form 

1 O ( r v , ) - ~  Ovz _ O, (6b) 
r Or Oz 

0 p  _ = 0 .  ( 6 c )  
Oz 

H v~ = vr = O, z = O ;  Ov, _ 0 ,  z -- 
Oz 2 (7) 

v z = V ,  z-----H; p = O ,  r -+ ~ ,  

where H = h + r2/a is the local value of  the distance between the surfaces of  the particles. Here, we will make use of 
the standard method employed in [10] to change over from the problem of  calculating the drag of disks to the 

corresponding problem for  spherical surfaces. The method is based on the fact that the dependence of H on r can be 

ignored when solving the hydrodynamic equations, since OH/Or = 2r /a  << 1. This was already done when we wrote S 

in the form OVr/OZ, i.e., the flow of the fluid is for  the most part radial. Solving (6)-(7), we determine p(r). We then 

calculate F by integrating p over the surface of  the particles: 

= i p (r) adr z. (8) F 
0 

Such an approach can be used to obtain an exact expression for the singular term in the expansions of  F in h / a .  Before 
presenting this solution, we will show how the simplest estimates can be used to obtain an appropriate formula which 

is accurate to within the numerical coefficient.  We note that the given problem contains two parameters with the 
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dimensions of length: the width of the gap h (the dimension along the z axis) and the effective radius of the 

interaction zone (ah) �89 (the dimension along the r axis). Thus, in calculation accurate to within the numerical 
coefficient, we can make the substitutions 

0 1 0 1 
, --~ ~ dr z ~ ah. 

Oz h Or V ' ~  . . . .  J (9) 

Proceeding on the basis of (6a), we then obtain 

p~n(s)  v#h, (IO) 

where S ~ Vr/h. With allowance for (9), we find from (6b) that 

v r ~ V - V ~ .  (11) 

Inserting (11) into (10), we will have 

From (8) we finally obtain 

K a 
p - - ~ - -  V ~  , (12) 

(vr/h) ~ hz 

I - -  3 - - / z  
F ~ pah ,-,, K (V/a)'-'~ a z (a/h) 2 03) 

These calculations are valid for n < 2/3. In the opposite case, the integral in (8) diverges. It is easy to understand the 
physical significance of this divergence. The contribution of the region r << (ah)�89 to F ceases to be decisive as the 

nonlinearity of the medium increases, since although h is small in this region, ~ is also small due to the high values of 
S. At n >__ 2/3, the resistance offered to the relative motion of the particles is determined not by the lubricant effect of 
the thin interlayers (these regions are exceptional, since the viscosity of the medium in them is low), but by the motion 
of the fluid relative to the surface of the particles as a whole, i.e., it is as if the fluid flowed over the surface of each 
particle individually in this case. Here, the role of hydrodynamic interaction is small. Inserting (13) into (4), we find 

that 
3n 

1 - - - -  

~3~ = C (n) - ~ ~ 3 , 

~1 ((fi0m/q~)' / 3 --  1) ' -  T ~ (1 - -  (q?/qgra) I / 3 )  t -  ~- n (14) 

where the coefficient C(n) can be determined on the basis of the exact solution of (6)-(7). This solution yields 

p( r )=[(3--2n)(2--n) l_n  ] : : - ~ K ( V ~ )  1 - ~  ~'-"d~ 
]~ ] 3 - - 2 n  

t T ;  
A similar expression was obtained in [11]. However, an error that was made in the calculation of (8) caused the 
exponent in (14) to take the value 1 --  2n. Correcting this error and performing calculations with the use of the 

definition of the beta function B( .... . . .  ) [12], we obtain 

�9 3n 

[ ]1 2----2n , (+ ) in  a' ( + ) 2  
(16) 

The viscosity of the suspension is described by Eq. (14). We find the following for the coefficient C(n) in this equation 

3 2 n / 2 [ ( 3 - - 2 n ) ( 2 - - n ) ] : - n  ( n 3n ) B 2 - - - -  1 - - ~  . 
C ( n ) =  8 1 - - n  , 2 ' 2 

(17) 

30 



We performed experiments with monodisperse suspensions of  spherical particles of  PMMA (2a = 350 jzm) in 

different  media that satisfied Eq. (1) (a suspension of sodium bentonite and a solution of a copolymer of polyacrylic 

acids (SAKAP)). The measurements were made on a "Reotest-2" viscosimeter in a coaxial-cylinder geometry. The 

experimental data was compared with the results of calculations performed with Eq. (14). The comparison is shown in 

Fig. 1, f rom which it is evident that the effective viscosity of  the suspension in a generalized Newtonian medium is 

proportional to the effective viscosity of the medium, i.e., is characterized by the same dependence on shear rate. This 
circumstance was also noted in [ 1 ]. The dependence t//(p) becomes weaker with an increase in the nonlinearity index 

n. Thus, at n close to 2/3 (SAKAP), it is almost indistinguishable. As regards the numerical value of the coefficient 

C(n), it is determined from Eq. (17) only at n _< 0.3 (for 7% bentonite). At n > 0.3, the coefficient  C remains 

approximately constant C ~ C(0.3) = 1.77. This value was determined from the best agreement with the experimental 

data. 
It should be noted that a somewhat different  approach to the determination of the viscosity of  the suspension 

in medium (1) was proposed in [13]. It is based on generalization of  the model of a free Happel surface [14]. In this 

model, the hydrodynamic interaction of a particle with its neighbors is accounted for by introducing special boundary 

conditions for the surface of  the spherical cell surrounding the given particle. Since it is impossible to obtain an exact 

solution to the equations of  motion of  the fluid (1) in spherical coordinates, the author of [13] proposed an 

approximate method in which energy dissipation in the cell and, thus, viscosity are determined with the same velocity 

field as for  the corresponding Newtonian fluid. The results of numerical calculations from [131 are compared with 

results calculated from Eq. (14) in Fig. 2. It is evident from the figure that the two models yield similar results when 

nonlinearity is not too great (n < 0.3). At large n, lubrication theory gives exaggerated results. The agreement between 

the models is improved somewhat if  we assume that C ~ C(0.3) at n > 0.3. The validity of this assumption is illustrated 

by the experimental data. A deviation occurs only at n > 0.5. The experiments, meanwhile, show that lubrication 

theory is preferable in this case. 

Bidisperse Suspensions. The above analysis was purely hydrodynamic.  Now let us examine its application to 

the solution of  a colloid chemistry problem involving the determination of  the effect ive viscosity of a suspension 
containing coarsely dispersed particles in a suspension of colloidal particles. In the general case, the ef fec t ive  viscosity 

t /o f  a colloidal system is a function of  two dimensionless parameters corresponding to the main microscopic processes 

that determine the rheology of  these systems [ 15, 16]: the process of particle--particle interaction rsS and the process 

of Brownian motion rBS. Here, r}. = CF~7~612Fc and r B = CBtT~61Z/kT are the characteristic times of these processes 

and tT~ is the hydrodynamic component of the viscosity of the suspension, i.e., the viscosity at high values of S -- 

when the structure has been completely destroyed and the suspension is Newtonian. The parameter rS (where r = r r- 

�9 or r = rB) characterizes the ratio of the characteristic time of  a micro-process to the characteristic time of 

deformation I/S. Thus, this parameter is the micro-rheological analog of the Deborah number  [15]. The viscosity of 

the colloidal suspension as a whole can often be represented in the form [16] 

--~-~ + (zs) ~ (18) 

For highly concentrated suspensions, there is usually no low-velocity Newtonian limit and r/o --* oo [ 17]. Thus, at rS << 
1 we can write 

(*S)-~' (19) 

i.e., the suspension manifests the properties of  a power-law fluid, K = r/oor -n.  Of  the two processes mentioned above, 

the dominant process will be that which takes less time. For example, the particle--particle interaction process 

dominates at r t, << r B, i.e., F b >> kT. Assuming that the interaction takes place as a result of undelayedl molecular 
attraction characterized by A - 10 -21 J, at h b << 61 we have [18] 

A6~ 
~ b -  24h~ (20) 

Then the condition r F << r B is satisfied at 6/h b >> (24kT/A) �89 Since the distance h b corresponding to the coagulation 
of particles is usually less than 0.1 /~m, the last inequality is always satisfied for  particles of  1 /~m diameter or larger. 
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It is such systems that we will concern ourselves with below. In this case, in (19) r ~ rr,. The exponent n in (19) is a 

function of  the volume content of  the particles of  the fine fraction 91. It was found that C r -- 6.4 and n = 1/2 for 

limitingly concentrated systems (91 --* 9m) [19]. It should be expected that n will decrease as dilution proceeds. 

Meanwhile, n ~ 0 at 91 ~ 0. 

The viscosity of  a bidisperse suspension as a whole is determined from Eq. (14): 

~ _ C ( n )  
3/z 

~- -- (21) 
(1 - -  ( % / % . ) ~ / 3 )  

If the finely dispersed fraction is stabilized, then r/---, r/oo and n = 0. Meanwhile, 700 is determined from a formula of the 

form (5): 

~1~ 1,1 

, -  1 ,1/~ ' (22) 

where the local value of  the volume content of the finely dispersed fraction in the space between particles of the 

coarse fraction ~1 is determined f rom the equation 

1 1 % 
~1 % % (23) 

where 91 -= V1/Vo, 92 -- V2/Vo, while V 1, V 2, and V o are the total volumes of  particles of the fine and coarse fractions 

and the total volume of  the system. If  a suspension of  particles of  a finely dispersed fraction is non-Newtonian due to 
structuring, then general equation (21) should be used. The value of ~ in this equation is determined from Eq. (19) 

with allowance for  (22): 
CF F~ )n(~,) 

C (/2 (f~l)) ( nfS6 ~ 

The above formula completely describes the rheological properties of  a bidisperse suspension if  the rheological 

properties of  the suspension of the finely dispersed fraction (matrix) are known, i.e., i f  the relation n(~l) and the 

quantity CFFb/612, corresponding to the strength of aggregates [19], are both known. 
To demonstrate the potential uses of  Eq. (24), we will examine the results of  experiments conducted with a 

bidisperse suspension consisting of  glass beads (62 ~ 500 #m), marshalite (61 ~ 10/~m), and glycerin. The experiments 
were conducted on a "Reotest-2" viscosimeter in a coaxial-cylinder geometry. The choice of a dispersion medium with 

a high viscosity (~f = 15 Pa.sec at 20"C) made it possible to avoid the occurrence of  sedimentational instability'during 

the experiment. In order to make use of (24), we should have complete information on the rheological properties of the 

matrix, i.e., the marshalite--glycerin system. The corresponding rheological curves are shown in Fig. 3. Analysis of the 

data by the method of  linear regression made it possible to obtain a set of straight lines in logarithmic axes. The values 

of n corresponding to these lines are shown in logarithmic coordinates in Fig. 4 as a function of  91. Assuming that 

n(91) is a power relation, we also analyzed this data by the method of linear regression and obtained the equation 

n (%) ----- 7,42q~ ,8' (25) 

Figure 5 shows experimental  dependences of  the viscosity of  glass-bead--glycerin and marshalite--glycerin systems at 
S = 2.2 see -1 on 92 and 91 with 91 = 0 and 92 = 0, respectively. Also shown in this figure are curves calculated from 
Eq. (24). Here, we assumed that CFFb/51 ~" = 105 Pa, i.e., A - 3.6.10 -18 J and h b = 1 nm. These conditions provided for 

the best agreement with the experimental data. The estimate of h b is realistic, but the value of  A is overstated 

compared to the values obtained for most substances - -  10-2~ -19 J [18]. The deviation may be connected with the 
assumption of a spherical particle shape. Marshalite particles are of  irregular form and have plane faces. Contacting 
along these faces, the particles can form stronger bonds than if the faces were different ly shaped. In any case, we can 
take the value CFFb/al 2 = l0 s Pa, regarding it as a certain empirical characteristic of the matrix. Inserting the 

resulting relation n(~bl) and the value of  the parameter CrFb/512 into (24), we construct the dependence of Jlffrlf on 
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the relative content of the finely dispersed fraction ~ol/~o e (where ~t = ~I + ~o~.) at S = 2.2 see -1 (see Fig. 6). It is 
evident from the figure that the theory agrees well with the experimental data at ~o t > 0.5, predicting the presence of 
the minimum of ~7,(~1). An increase in ~o t is accompanied by an increase in the depth of the minimum and a decrease 

in the corresponding value of pl/~o. 
Conclusion. We determined the form of the dependence of the effective viscosity of a suspension with a 

power-law fluid generalized by a Newtonian fluid on particle concentration. This dependence becomes weaker as the 
nonlinearity of the fluid increases, while the viscosity of the suspension remains proportional to the viscosity of the 
fluid. The results were corrected with allowance for experimental data and numerical calculations. 

We also determined the viscosity of a concentrated bidisperse system with a highly disperse structure-forming 
fraction for different granulometric compositions. The given theory can serve as a basis for optimizing the 
composition of disperse systems. 

NOTATION 

Here A is the Hamaker constant; a, particle radius; C, numerical coefficient in (14); C B and C F, numerical 
coefficients used in the determination of r B and rF; F, hydrodynamic resistance to the motion of the particles; Fb, 
force bonding the particles; h, mean distance between particle surfaces in (2); h b distance between the surfaces of 

aggregated particles; k, Boltzmann constant; K and n, parameters of the medium in (1); p, pressure; S, shear rate; T, 
absolute temperature; v, velocity of the fluid; V, relative velocity of the particles; 61 and 62, diameters of particles of 
the fine and coarse fractions; r, r B, and r F characteristic time of the dominant process and its value for Brownian 
motion and particle--particle interaction; r/s and rl, viscosity of the suspension as a whole in a non-Newtonian medium 
(or a highly dispersed fraction); T/f, viscosity of the fluid; 70, ~7~, values of rl at S --, 0 and S -~ c~; ~o 1 and ~% volume 
contents of the fine and coarse fractions; ~, volume fraction of particles in suspension in the non-Newtonian medium; 
~o m, maximum dense random packing; ~1, local value of ~ol; ~o t - ~o~ + ~ .  

LITERATURE CITED 

. 

. 

~ 

4. 
5. 
6. 
7. 

. 

9. 
I0. 
II. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 

V. A. Ivanov, Modeling Processes in the Production and Processing of Polymers [in Russian], Sverdlovsk 
(1985), pp. 102-110. 
G. S. Khodakov, Studies of the Technology and Equipment of the Terminal Complexes of Gas Pipellnes [in 
Russian], Sverdlovsk (1985)~ pp. 102-1 I0. 
E. Godde, VDI Ber. Vet. D. Ing., No. 371, 105-110 (1980). 
N. B. Ur'ev, Highly Concentrated Disperse Systems [in Russian], Moscow (1980). 
N. A. FrankeI and A. Acrivos, Chem. Eng. Sci., 22, 847-853 (1967). 
A. L. Graham, Appl. Sci. Res., 37,275-286 (1981). 
J. Batchelor and J. Green, Hydrodynamic Interaction of Particles in Suspensions [Russian translation], Moscow 
(1980), pp. 11-45. 
J. D. Coddard, 2. non-Newtonian Fluid Mech., 2, 169-189 (1977). 
L. D. Landau and E. M. Lifshitz, Hydrodynamics [in Russian], Moscow (1986). 
B. V. I)eryagin, N. A. Krotova, and V. P. Smilga, Adhesion of Solids [in Russian], Moscow (1973). 
H. Tananka and J. White, J. non-Newtonian Fluid Mech., 7, 313-333 (1980). 
G. M. Korn and T. A. Korn, A Manual of Mathematics, McGraw-Hill (1978). 
V. A. Ivanov, Mekh. Kompozitn. Mater., No. 5, 940-943 (1984). 
J. Happel and G. Brenner, Hydrodynamics at Low Reynolds Numbers [in Russian], Moscow (1976). 
J. D. Goddard, Adv. Colloid Interface Sci., 17, Pt. B, 241-262 (1982). 
E. C. Chaffey, Colloid Polym. Sci., 255, 691 (1977). 
J. Mewis, Rheology. Proc. VIII Congress on Rheology. Vol. 1, 149-168 (1980). 
B. V. Deryagin, N. V. Churaev, and V. M. Muller, Surface Forces [in Russian], Moscow (1985). 
A. A. Potanin, N. B. Ur'ev, Ya. Mevls, and P. Moldenaers, Kolloidn. Zh., $1, No. 3, 490-499 (1989). 

33 


